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Abstract-The geometric mean combining rule for the total interaction energy of two non-bonded 
atoms, the energy being described by the Buckingham type potential, is suggested. Some numerical 
examples are given to compare this rule with the combining rules for the exp-six potentials proposed 
by Mason and Rice. 

The atom-atom approximation for the energy of 
interaction of neutral molecules, as has been shown 
in a number of recent papers,‘-” is a convenient 
and efficient model to study intermolecular forces. 
A sufficiently good representation of the inter- 
action energy of two non-bonded atoms is a central 
potential (the energy depends only on the inter- 
atomic distance), with numerical parameters being 
determined on the basis of experimental data.12*13 
The most frequently used interatomic potentials 
are generally written either in the Lennard- 
Jones 

cp = - Arm6 + Br-12 = E [- 2(ro/@ + (r,,/r)‘*] (1) 

or modified Buckingham form 

p=-AP+Bexp(-or)=& [- (r0W 

+(6/h) exp k (1 -rlrdl, (2) 

where r, Q, r,,, A are the interatomic distance, the 
depth of the potential well, the value of r for the 
energy minimum and the steepness of exponential 
repulsion respectively14 (Fig 1). 

As a rule, a molecule consists of more than one 
type of atoms. Therefore, to evaluate the inter- 
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Fig 1. Parameters of an interatomic potential function 
of the Buckingham form. 

molecular interaction in the atom-atom approxi- 
mation we must know the potential parameters 
A, B, a (or, alternatively, z, r,,, A) both for the inter- 
action of pairs of like atoms of types XX, YY, ZZ 
and for mixed interactions of types XY, XZ, YZ. 
The problem of empirical fitting of the A, B, OL 
constants usually involves considerable difficulties 
owing to a limited number of suitable experimental 
data. In order to decrease the number of con- 
stants to be fitted and, consequently, the number of 
independent theoretical parameters, one tries when 
possible, to use as standards the compounds 
consisting of only one type of atoms and to deter- 
mine the constants for mixed interactions in more 
complicated molecules by means of the so-called 
combining rules which connect the parameters 
for pairs of unlike atoms with those for like atoms. 

The combining rules so far used by various 
authors2*14-1* are “empirical” and have no rigorous 
theoretical foundation. The combining rule most 
often used for an equilibrium interatomic distance 
is the arithmetic mean 

(r&2 = [(r& + (r0)221/2 (3) 

which is rigorously valid for “hard-sphere” 
particles (recently Good and HopeI suggested, 
for the sake of convenience, to use the geometric 
mean for rO). 

For the two-parameter Lennard-Jones potential 
function, Eq. (3) is usually supplemented by l I2, 
the geometric mean for the interaction energy of 
two atoms at a distance of r = r,, apart, 

El2 = k11~22Y’*. (4) 

This relation approximately follows from Eq. (1) 
and the London expression for dispersion energy 
through the polarizabilities ((Y) and ionization 
potentials (Z) of interacting particles provided 
I, and I2 and the diameters of the particles do not 
differ greatly.16 

679 



680 K. V. MIRSKAYA 

For the 3-parameter potential of form (2) a 
combining rule is to be used which would take into 
account not only the coordinates of the minimum 
point of the potential well but also the shape of the 
p(r) potential curve, that is the third numerical 
parameter A (or a). Among several others, the 
following combining rules for the exp-six potential, 
Eq. (2), between two unlike molecules that have 
been suggested by Mason and Rice,15 are often 
used: 

A,, = (~~v%P, 812 = (&l&J”*, 

a12 = @,I + a22)/2. 

(5) 

These expressions can be obtained by separately 
employing the geometric mean rule for the attrac- 
tive and repulsive terms in Eq. (2). In this case 
rules (3) and (4) do not hold. 

However, a number of experimental data and 
theoretical results imply that the geometric mean 
rule is valid for the total interaction energy of 
atoms and not for its separate terms. Amdur et aLzO 
in their study of scattering of high velocity neutral 
particles showed that the potential energy between 
the helium atom and the argon atom at small 
distances derived from the measured cross sec- 
tions may be represented by a function of the form 
(c = KP, which is the geometric mean of the poten- 
tials between two helium and two argon atoms. 
The range of distances for the He-A system is 
described by the arithmetic mean of the individual 
interaction distances. 

In the detailed numerical study by Abrahamson*’ 
it was found that the rule (o12 = ((~~~9~~)~‘~ is 
accurate to within 0.01-l per cent (rising but 
rarely to a few per cent) for the energy of inter- 
action of atoms with Z = 2 to Z = 105, which is 
derived quantum mechanically in the small dis- 
tances approximation. From theoretical papers by 
Tang2* and Weinhold23 it follows that the upper 
bound for interaction energy of unlike particles, 
derived from quantum mechanics in the large dis- 
tances approximation, is also determined by this 
rule. 

Taking into consideration the results of these 
papers we shall try to apply the geometric mean 
rule for the total interaction energy of atoms within 
the framework of a semi-empirical approach, when 
the energy is described by Eq. (2) assumed valid 
in the whole possible range of interatomic distances 
(large, small and intermediate). 

Let z. be the reduced distance (r/ro). Assume that 
for every value of z the interaction energy of two 
unlike atoms is the geometric mean of the inter- 
action energies of two like atoms 

(cl*(z) = r(P11(z)(oz1(z)11’2. (6) 

Ifz=l,thatisifr= r,, we have relation (4) as a 
particular case of (6). By calculating e12, and (p12 

from (6) for some value of z # 1 (z = z,J, the value 
of Al2 may be found from the equation 

$&A) = ((PI*/%*) 

= [ANA -6)l[zka-(6/A) exp A (1 -z,& 

The p’(A) function at a fixed z can be tabulated or 
represented by a curve. Fig 2 shows the p’(A) 
curve corresponding to tk = 213. The calculations 
show that for At2 the relation Al2 = (Al, +A,,)/2 
is approximately valid. 

In order to obtain the third constant of potential 
(2) we have to supplement combining rule (6) by 
some rule for the equilibrium distance r,. In our 
calculations of structure and properties of molec- 
ular crystals we take arithmetic mean rule (3). 
Using (ro)12, 612 and A,*, we find the constants A, 
B and OL of the Buckingham potential for mixed 
interactions from the formulas A = - tzro6A/(A - 6), 
B =- 6eY(A- 6),or = Air,. 

Below we give some numerical examples to 
compare rules (5) and (6). In these examples the 
C - C and H-H potential curves that have been 
employed in” for calculating the elastic constants 
of the naphthalene crystal are used (Table 1). In 
Table 2 the parameters of the two C-H curves 
calculated by means of rules (5) and (6) are given. 
Fig 3 represents the difference between the two 
curves. 

Using the potentials from Tables 1 and 2 we 
have calculated some characteristic features of the 
naphthalene crystal potential energy surface U as 
a function of the geometrical lattice parameters. 
The method of atom-atom potentials, in the form 
described in our previous papers,12v24 has been 
used for these calculations. The dependence of 
the results on the combining rules is illustrated by 
Table 3. 

Fig 2. Reduced interatomic potential energy 9’ =9/e 
as a function of A for zti = 213. 
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Table 1. C-C and H-H pair potentials parameters 

A kcal& 
’ mole 

B kcal 
‘mole 

cu, A-’ kcal rA 
“mole 09 A 

c-c 353 6.0. IO’ 368 - 0.067 3.8 14 
H-H 46.6 7.8. 103 4.29 -0-048 2.8 12 

Table 2. C-H pair potential parameters 

B&f!! a, A-1 kcal 
’ mole E’mOle ro, 14 A 

(5) 128 2.16. 10’ 3.98 -0.0575 3.26 1299 
(6) 137 2.07. lo4 3.93 - 0.0578 3.30 12.98 

Table 3. Some characteristic features of the potential energy surface of the naphthalene crystal 
calculated on the basis of the two combining rules 

Combining B 
rule U,,(c) 

(5) 30”19’ 47”17’ 292”18’ -16.42 2.29 5.47 5.23 7.71 - 16.73 
(6) 30”17’ 47”19’ 292”20’ - 16.56 2.55 6.22 5.70 7.75 - 16.80 

0 0 0.8 Il.2 13.7 9.0 0.5 0.4 

31 32 33 34 35 

r, a 
Fig 3. Comparison of the two C-H potential functions 
obtained by means of combining roles (6)-curve 1, and 

(5)-curve 2. 

In the lh-st three columns of Table 3 the equil- 
ibrium values of the Eulerian angles 8, cp, $ are 
given, that correspond to the minimum of the 
r/(6, cp, +) energy surface when the unit cell para- 
meters a, b, c, /3 are fixed (the Eulerian angles 
describe the orientation of a molecule in the unit 
cell). The fourth column contains lattice energy 
calculated at the minimum point of the U(@, (o, $) 

surface. In the three following columns we give 
the values of the second derivatives of the energy 
with respect to lattice parameters. Finally, the 
two last columns contain the position and the 
depth of the minimum of the U(a) curve when the 
Eulerian angles are fixed. 

Comparison of the results obtained with the two 
C-H curves is given in the last row of Table 3. 
It may be noticed that for the equilibrium orienta- 
tion of molecules in a crystal the two combining 
rules lead to the same results. There is but a slight 
difference in the lattice energy values. It can be 
seen also that utilization of Eqs. (5) results in a 
decrease of the equilibrium unit cell parameters. 
However, there is a rather significant difference 
(10-l 5%) between the values of the second 
derivatives of the energy with respect to lattice 
parameters and, consequently, the elastic moduli.” 
It is to be noted that the results obtained by means 
of Eq. (6) are in better agreement with experiment 
than those obtained with Eqs. (5). 

The above examples and Fig 3 show that, in 
principle, the shape of the curve for mixed inter- 
actions and the values obtained by calculation 
depend on the choice of the combining rules 
though for some problems the effect may not be 
signikant. However, even in this case Eq. (6), 
introduced here as a combining rule, seems to be 
preferable, since it relates to the total interaction 
energy and, besides, since it makes it possible to 
preserve the validity of Eqs. (3) and (4), which has 
been confhmed by many authors.14~‘E-18 
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